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Challenges with Concurrent Programming
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Less synchronization More synchronization

Deadlock
Order, atomicity & 

sequential consistency 
violations

Poor performance: lock 
contention, serialization

Concurrent and 
correct



Task Parallelism

• Different tasks running on the 
same data
• Threads execute computation 

concurrently

• E.g., pipelines

• Explicit synchronization is used 
to coordinate threads
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HashMap in Java

public Object get(Object key) {
int idx = hash(key);         // Compute hash
HashEntry e = buckets[idx];  // to find bucket
while (e != null) {          // Find element in bucket

if (equals(key, e.key))
return e.value;

e = e.next;
}
return null;

}

CS636 Swarnendu Biswas 4



Synchronized HashMap in Java

public Object get(Object key) {
synchronized (mutex) {  // mutex guards all accesses

return myHashMap.get(key);
}

}
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• Uses explicit coarse-grained locking



Coarse-Grained and Fine-Grained Locking

Coarse-grained

• Pros: Easy to implement

• Cons: limits concurrency, poor scalability

Fine-grained

• Idea: Use a separate lock per bucket

• Pros: thread safe, concurrent

• Cons: difficult to get correct, error-prone
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Data Parallelism

• Same task applied on many data items in parallel
• E.g., processing pixels in an image

• Useful for numeric computations 

• Not an universal programming model
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Task vs Data Parallelism

Task Parallelism

• Different operations on same or 
different data

• Parallelization depends on task 
decomposition

Data Parallelism

• Same operation on different 
data

• Parallelization proportional to 
the input data size
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Combining Task and Data Parallelism

Processing in 
graphics 

processors

Task parallelism 
through pipelining

• Each task could apply a 
filter in a series of 
filters

Data parallelism for 
a given filter

• Apply the filter 
computation in parallel 
for all pixels
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https://www.zdnet.com/article/understanding-task-and-data-parallelism-3039289129/



Abstraction and Composability

CS636 Swarnendu Biswas 10

Abstraction

• Simplified view of an entity or a problem

• Example: procedures, ADT

Composability

• Join smaller units to form  larger, more complex unit

• Example: library methods



Locks are difficult to program!

• If a thread holding a lock is delayed, other contending threads cannot 
make progress
• All contending threads will possibly wake up, but only one can make progress

• Lost wakeups – missed notify for condition variable

• Deadlocks

• Priority inversion

• Locking relies on programmer conventions
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Locking relies on programmer conventions!

• If a thread holding a lock is delayed, other contending threads cannot 
make progress
• All contending threads will possibly wake up, but only one can make progress

• Deadlocks

• Priority inversion

• Locking relies on programmer conventions
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/* 

* When a locked buffer is visible to the I/O layer

* BH_Launder is set. This means before unlocking

* we must clear BH_Launder,mb() on alpha and then

* clear BH_Lock, so no reader can see BH_Launder set

* on an unlocked buffer and then risk to deadlock. 

*/

Actual comment 
from Linux Kernel

Bradley Kuszmaul, and Maurice Herlihy and Nir Shavit



Lock-based Synchronization is not 
Composable
class HashTable {

void synchronized insert(T elem);

boolean synchronized remove(T elem);

}

Say now you want to add a new method:
boolean move(HashTable tab1, HashTable tab2, T elem)
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Choosing the right locks!

• Locking schemes for 4 threads may not be the most efficient at 64 
threads
• Need to profile the amount of contention
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What about hardware atomic 
primitives?
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Transactional Memory

• Transaction: A computation sequence that executes as if without 
external interference
• Computation sequence appears indivisible and instantaneous

• Proposed by Lomet [‘77] and Herlihy and Moss [‘93]
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Advantages of Transactional Memory (TM)

• Provides reasonable tradeoff between abstraction and performance
• No need for explicit locking

• Avoids lock-related issues like lock convoying, priority inversion, and deadlocks
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boolean move(HashTable tab1, HashTable tab2, T elem) {
atomic {
boolean res = tab1.remove(elem);
if (res)
tab2.insert(elem);

}
return res;

}



Advantages of TM

Programmer says what needs to be atomic
• TM system/runtime implements synchronization

Declarative abstraction
• Programmer says what work should be done

• Compare with imperative abstraction

• Programmer says how work should be done

Easy programmability (like coarse-grained locks)
• Performance goal is like fine-grained locks
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Basic TM Design

• Transactions are executed speculatively

• If the transaction execution completes without a conflict, then the 
transaction commits
• The updates are made permanent

• If the transaction experiences a conflict, then it aborts
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Database Systems as a Motivation
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• Database systems have successfully exploited parallel hardware for 
decades

• Achieve good performance by executing many queries simultaneously 
and by running queries on multiple processors when possible



Database Systems as a Motivation

Atomicity

Consistency

Isolation

Durability
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TM vs Database Transactions

Database Transactions

• Application level concept

• Durable

• Operations involve mostly disk 
accesses

TM

• Supported by language runtime 
or hardware

• Not durable

• Operations are from main 
memory, performance is critical
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Properties of TM execution

Tx Atomic appears to happen 
instantaneously

Commit Appears atomic

Abort Has no side effects

Serializable appear to happen serially in 
order

Isolation Other code cannot observe 
writers before commit
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TM Execution Semantics

Thread 1

atomic {

a = a – 20;

b = b + 20;

c = a + b;

a = a – b;

}

Thread 2

atomic {

c = c + 40;

d = a + b + c;

}
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Thread 1’s updates to a, 
b, and c are atomic

Thread 2’s either sees ALL 
updates to a, b, and c from 

T1 or NONE

No data race due to 
TM semantics



Atomicity violation

if (thd->proc_info)

fputs(thd->proc_info, …)

…

thd->proc_info = NULL;
…
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MySQL
ha_innodb.cc

ti
m

e



Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)

fputs(thd->proc_info, …)
}

atomic {
thd->proc_info = NULL;

}
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No data race due to 
TM semantics

ti
m

e



Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)
fputs(thd->proc_info, …)

}

atomic {
thd->proc_info = NULL;

}
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No data race due to 
TM semantics

ti
m

e



Transactional HashMap

Pros

• Thread-safe, easy to 
program

Cons

• Good performance and 
scalability depends on 
the TM implementation
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synchronized in Java

synchronized

• Provides mutual exclusion 
compared to other blocks on the 
same lock

• Nested blocks can deadlock if 
locks are acquired in wrong 
order

TM transaction

• A transaction is atomic w.r.t. all 
other transactions in the system 

• Nested transactions never 
deadlock
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TM Interface

void startTx();
bool commitTx();

void abortTx();

T readTx(T *addr);
void writeTx(T *addr, T val);
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•Set of variables read by the Tx

Read set

•Set of variables written by the Tx

Write set



Transactions cannot replace all uses of locks!

Thread 1

do {

startTx();

writeTx(&x, 1);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp = readTx(&x);

while (tmp == 0) {}

} while (!commitTx());
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Concurrency in TM 

• Two levels
• Among Txs

• Among individual Tx
operations
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rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx



Linearizability
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time

rdTx p wrTx q
commit
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Serializability
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commit
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Strict Serializability
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time
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Limitations of Strict Serializability
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time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx
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commit
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Can Linearizability help with this?
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time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit
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startTx



Can Linearizability help with this?
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time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

If each transaction appears to execute atomically at a single 
instant, then conflicts between transactions will not occur



Snapshot Isolation (SI)

• Can potentially allow greater concurrency between Txs

• Many database implementations actually provide SI 

Weaker isolation requirement than serializability

SI allows a Tx’s reads to be serialized before the Tx’s writes

All reads must see a valid snapshot of memory

Updates must not conflict
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Example of SI

Thread 1

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(x, tmp);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(y, tmp);

} while (!commitTx());
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x = 0
y = 0



Understanding SI

int t = x + 1; (1)

x = t; 

x = 1;

int t = y; (0)

int t = x + 1; (1)

x = t;

y = 1;

int t = x; (0)
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Sequentially consistent but not SI

SI but not sequentially consistent and not serializable

x = 0
y = 0

Data races are there 
for a purpose!

M. Zhang et al. Avoiding Consistency ExceptionsUnder Strong Memory Models. ISMM 2017.



TM Terminology
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A conflict occurs when two transactions perform conflicting 
operations on the same memory location.

Let Ri and Wi be the read and write sets of Tx i. Then a conflict occurs iff
• 𝑅𝑖 ∩𝑊𝑗 ≠ ∅, or 
• 𝑊𝑖 ∩𝑊𝑗 ≠ ∅, or 
• 𝑊𝑖 ∩ 𝑅𝑗 ≠ ∅



TM Terminology
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The conflict is detected when the underlying TM system 
determines that the conflict has occurred.

The conflict is resolved when the underlying TM system takes 
some action to avoid the conflict.



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

Location
Value 
read

Value 
written

bal = 1000



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

Location
Value 
read

Value 
written

bal 1000

1

bal = 1000



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

bal 1000 1100

Location
Value 
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bal 1000

3

bal = 1000



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

bal 1000 1100

Location
Value 
read

Value 
written

bal 1000

3

Thread 1’s Tx ends, updates are 
committed, value of bal is written 

to memory; Tx log is discarded 

bal = 1100



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 51

Location
Value 
read

Value 
written

bal 1000 900

4

bal = 1100



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

bal 1000 900

4

bal = 1100

Thread 2’s Tx ends, but Tx commit fails, 
because value of bal in memory does 

not match the read log; Tx needs to rerun



Concurrency Control

• Occurrence, detection, and resolution happen at the 
same time during execution

Pessimistic

• Conflict detection and resolution can happen after the 
conflict occurs

Optimistic

CS636 Swarnendu Biswas 53



Pessimistic Concurrency Control
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time

rdTx p wrTx q wrTx rstartTx
commit

Tx

rdTx p wrTx qstartTx wrTx r
commit

Tx

Conflict occurs, is detected, and is resolved by 
delaying Thread 2’s Tx

Thread 1

Thread 2



Time of locking

When the Tx first accesses a location

When the Tx is about to commit
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Optimistic Concurrency Control
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time

rdTx p wrTx q wrTx rstartTx

Conflict 
occurs

Thread 1

Thread 2

rdTx p wrTx q wrTx rstartTx

Conflict 
detected and 
resolved by 
aborting the 

Txs and 
reexecuting
one or both 

of them



Concurrency Control

Pessimistic 

• Usually claims exclusive ownership of 
data before accessing

• Effective in high contention cases

• Needs to avoid deadlock situations

Optimistic

• Avoids claiming exclusive ownership 
of data

• Effective in low contention cases

• Needs to avoid livelock situations
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Hybrid Concurrency Control

Use pessimistic control for writes and optimistic control for reads

Use optimistic control TM with pessimistic control of irrevocable Txs

CS636 Swarnendu Biswas 58



Version Management

TMs need to track updates for conflict 
resolution

Eager

• Tx directly updates data in memory  (direct 
update)

• Maintains an undo log with overwritten values

• Values in the undo log are used to revert 
updates on an abort
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Eager version 
management

Upon 
commit

On abort

Flush undo 
log

Write back 
undo log



Version Management

Lazy

• Tx updates data in a private redo log

• Updates are made visible at commit 
(deferred update)

• Tx reads must lookup redo logs

• Discard redo log on an abort
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Lazy version 
management

Upon 
commit

On abort

Write back 
redo log

Flush redo 
log



Conflict Detection
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Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?



Conflict Detection
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Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?
• Validation operation – Successful validation means Tx had no 

conflicts



Conflict Detection in Optimistic Concurrency 
Control

Conflict granularity

• Object or field, line offset or cache line

Time of conflict detection

• Just before access (eager), during validation, during commit (lazy)

Conflicting access types

• Among concurrent Txs, or between active and committed Txs
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Object Layout
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Object layout

HEADER

field1

field2

field3

Object Model in Jikes RVM

https://www.jikesrvm.org/JavaDoc/org/jikesrvm/objectmodel/ObjectModel.html



Issues with Conflict Granularity

Thread 1

do {

startTx();

tmp = readTx(&x);

writeTx(x, 10);

} while (!commitTx());

Thread 2

…

y = 20;

…

CS636 Swarnendu Biswas 65

x = 0
y = 0



Question

• Eager version management
• Should you use pessimistic or optimistic control?
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Inconsistent Reads and Zombie Txs

Thread 1

do {
startTx(); 
int tmp1 = readTx(&x);

int tmp2 = readTx(&y);
while (tmp1 != tmp2) {}

} while (!commitTx());

Thread 2

do {
startTx();
writeTx(&x, 10);
writeTx(&y, 10); 

} while (!commitTx()); 
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x = 0
y = 0



Weak and Strong Atomicity

Weak 

• Provides Tx semantics only among Txs

• Checks for conflicts only among Txs

Strong

• Guarantees Tx semantics among Txs and non-Txs

Often referred to as weak and strong isolation
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Few Issues to Consider with Weak Isolation

Non-repeatable reads

Intermediate lost updates

Intermediate dirty reads

Granular lost updates

…

…
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Providing Txs: TM Implementations

Software Transactional Memory (STM)

Hardware Transactional Memory (HTM)
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STMs vs HTMs

STM

• Supports flexible techniques in 
TM design

• Easy to integrate STMs with PL 
runtimes

• Easier to support unbounded Txs
with dynamically-sized logs

• More expensive than HTMs

HTM

• Restricted variety of 
implementations

• Need to adapt existing runtimes 
to make use of HTM

• Limited by bounded-sized 
structures like caches

• Better performance than STMs
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Software Transactional 
Memory
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Software Transactional Memory (STM)

Data structures

• Need to maintain per-thread Tx
state

• Maintain either redo log or undo 
log

• Maintain per-Tx read/write sets

• McRT-STM, PPoPP’06

• Bartok-STM, PLDI’06

• JudoSTM, PACT’07

• RingSTM, SPAA’08

• NoRec STM, PPoPP’10

• DeuceSTM, HiPEAC’10

• LarkTM, PPoPP’15
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We love questions!

Is design of undo log important in eager version 
management?

Is design of redo log important in lazy version 
management?
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Well-designed applications should have low conflict rates



Implementing STM

• Use compilation passes to 
instrument the program
• startTx() - Tx entry point (prolog)

• commitTx() - exit point (epilog)

• readTx/writeTx - Transactional 
read/write accesses

• TM runtime tracks memory 
accesses, detects conflicts, and 
commits/aborts Txs
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atomic {
tmp = x;
y = tmp + 1;

}

td = getTxDesc(thr);
startTx(td);
tmp = readTx(&x);
writeTx(&y, tmp+1);
commitTx(td);



Object Metadata and Word Metadata
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Object1 layout

metadata

field1

field2

field3

Object2 layout

metadata

field1

Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

metadata4



Variants of Word-based Metadata
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Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

Use hash functions to map addresses to 
a fixed-size metadata space

Addr 1

Addr 2

Addr 3

Addr 4

metadata

Process-wide metadata space



Pros and Cons of Object Metadata

Pros

Metadata lies on 
the same cache 

line

Single update for 
accesses to all 

fields

Cons

Potential for false 
conflicts

Increases coupling

•E.g., GC 
considerations
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Object1 layout

metadata

field1

field2

field3

Object2 layout

metadata

field1



Major STM Designs

Per-object versioned locks (McRT-STM, Bartok-STM)

Global clock with per-object metadata (TL2)

Fixed global metadata (JudoSTM, RingSTM, NOrec STM)

Nonblocking STM (DSTM)
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Which granularity to use?

Impact on memory usage

• Speed of mapping location to metadata

Impact on performance

Potential impact due to false conflicts
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Header Word Optimizations
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00 00

TM metadata 00 Hashcode 10Normal lock 01

11

Hashcode

Normal lock

TM metadata

1. Initially header word is zero

2. First type of use in encoded 
in header word

3. Second type of use triggers 
inflations



Lock-Based STM with Versioned Reads

High-
level 
design

Pessimistic concurrency-
control for writes

Locks are acquired 
dynamically

Optimistic concurrency 
control for reads

Validation using version 
numbers
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Other Design Issues 

• Eager vs lazy version 
management

• Access-time locking  or commit-
time locking
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STM Metadata

• Lock is available – no pending writes, holds the current version of the 
object

• Lock is taken – refers to the owner Tx
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Versioned locks
• Lock – To arbitrate writes 
• Version number – detect conflicts involving reads



Read and Write Operations
readTx(tx, obj, off) {
tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);

tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;

write(obj, off, newVal);
release(obj);

}
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Eager version 
management



Read and Write Operations
readTx(tx, obj, off) {
tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);
undoLogInt(tx, obj, off);
tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;
write(obj, off, newVal);
release(obj);

}

undoLogInt(tx, obj, off) {
tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;
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Eager version 
management



Conflict Detection on Writes

Writes? Reads
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Conflict Detection on Reads

Writes Reads?

bool commitTx(tx) {

foreach (entry e in tx.readSet) 

if (!validate(e.obj, e.ver))

abortTx(tx);

return false;

foreach (entr e in tx.writeSet) 

unlock(e.obj, e.ver);

return true;

}
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Unlock increments 
the version number



No Conflict on Read from Addr=200
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addr = 200, ver = 100

Read set
ver = 100

x == 42

Remember: 
metadata doubles as 

a version and lock

Addr = 200



No Conflict on Read from and Write to 
Addr=200
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x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200



No Conflict on Write to and Read from 
Addr=200
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x == 17 addr = 200, 

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200



Conflict on Read from Addr=200, Concurrent 
Tx Updates and Commits
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addr = 200, ver = 100

Read set
ver = 101

x == 2Addr = 200



Conflict on Read from Addr=200, Concurrent 
Write 
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addr = 200, 

Read set
ver = 105

x == 22Addr = 200



Conflict on Read from Addr=200 during 
Commit
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addr = 200, ver = 100

Read set

x == 47Addr = 200



Conflict Between Read and Write from 
Addr=200
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x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 101

Write set

addr = 200, val = 42

Undo log

Addr = 200



Practical Issues

Version overflow

Do these techniques (McRT, Bartok) allow zombie txs?
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Semantics of McRT and Bartok

Read set may not remain consistent during txs

Does not detect conflicts between txs and non-txs
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Hardware Transactional 
Memory
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Hardware Transactional Memory (HTM)

• Can provide strong isolation 
without modifications to non-Tx
accesses 

• TCC, ISCA’04

• LogTM, HPCA’06

• Rock HTM, ASPLOS’09

• FlexTM, ICS’09

• Azul HTM

• Intel TSX

• IBM Blue Gene/Q
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Possible ISA Extensions

Explicit

• begin_transaction

• end_transaction

• load_transactional

• store_transactional

Implicit

• begin_transaction

• end_transaction

CS636 Swarnendu Biswas 102

Which do you 
think is simpler?



Design Issues in HTMs

• Requires additional structures

• Extend existing data caches to track accesses

• Granularity matters

Tracking read and write sets

• Natural to piggyback on cache coherence protocols to detect 
conflicts

Conflict detection
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Intel Transactional Synchronization 
Extensions

TSX supported by Intel in selected series based on Haswell 
microarchitecture

TSX hardware can dynamically determine whether threads need to 
serialize lock-protected critical sections
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https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained


Intel Transactional Synchronization Extensions

• Optimistically executes critical sections eliding lock 
operations

• Commit if the Tx executes successfully

• Otherwise abort – discard all updates, restore 
architectural state, and resume execution

• Resumed execution may fall back to locking

TSX operation
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TSX Interface

Hardware Lock Elision (HLE)

• xacquire

• xrelease

• Extends HTM support to legacy 
hardware

Restricted Transactional Memory (RTM)

• xbegin

• xend

• xabort

• xtest

• New ISA extensions
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Hardware Lock Elision (HLE)

• Application uses legacy-compatible hints to identify critical sections
• Hints ignored on hardware without TSX

• HLE provides support to execute critical section transactionally 
without acquiring locks

• Abort causes a re-execution without lock elision

• Hardware manages all state

CS636 Swarnendu Biswas 107

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.



Lock Acquire Code
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mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.



HLE Interface
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mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

mov eax, 1
Try:   xacquire lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

xrelease mov mutex, 0

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.



Restricted Transactional Memory (RTM)

• Software uses new instructions to identify critical sections

• Similar to HLE, but more flexible interface for software
• Requires programmers to provide an alternate fallback path

• Abort transfers control to target specified by XBEGIN operand

• Abort information encoded in the EAX GPR
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Lock Acquire Code
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mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.



RTM Interface
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Retry:  xbegin Abort
cmp mutex, 0
jz Success
xabort $0xff

Abort:  
// check eax and do retry policy 
// actually acquire lock or wait 

to retry
…

cmp mutex, 0
jnz Rel
xend

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

Rel:   mov mutex, 0



Aborts in TSX

• Conflicting accesses from different cores (data, locks, false sharing)

• Capacity misses

• Some instructions always cause aborts 
• System calls, I/O

• Eviction of a transactionally-written cache line

• Eviction of transactionally-read cache lines do not cause immediate 
aborts
• Backed up in a secondary structure which might overflow
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Section 12.2.4 in Intel 64 and IA-32 Architectures Optimization Reference Manual



Finding Reasons for Aborts can be Hard!

EAX register bit position Meaning

0 Set if abort caused by XABORT instruction

1 If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set

2 Set if another logical processor conflicted with a memory address that was part of 
the transaction that aborted

3 Set if an internal buffer overflowed

4 Set if debug breakpoint was hit

5 Set if an abort occurred during execution of a nested transaction

23:6 Reserved

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved)
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TSX Implementation Details

• Every detail is not known
• Read and write sets are at cache line granularity

• Uses L1 data cache as the storage

• Conflict detection is through cache coherence protocol
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TSX Caveats

• No guarantees that txs will commit

• There should be a software fallback independent of TSX to guarantee 
forward progress
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So what?

• GNU glibc 2.18 added support for lock elision of pthread mutexes of type 
PTHREAD_MUTEX_DEFAULT. Glibc 2.19 added support for elision of read/write 
mutexes
• Depends whether the --enable-lock-elision=yes parameter was set at compilation time of the 

library

• Java JDK 8u20 onward support adaptive elision for synchronized sections when 
the -XX:+UseRTMLocking option is enabled

• Intel Thread Building Blocks (TBB) 4.2 supports elision with the 
speculative_spin_rw_mutex
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