
CS636: Transactional
Memory
Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Challenges with Concurrent Programming

14-Apr-19 Swarnendu Biswas 2

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correct

Task Parallelism

• Different tasks running on the
same data
• Threads execute computation

concurrently

• E.g., pipelines

• Explicit synchronization is used
to coordinate threads

CS636 Swarnendu Biswas 3

program
start

output

10 1 4 2 9 5 7 8

m
in

m
ax

m
e

an

HashMap in Java

public Object get(Object key) {
int idx = hash(key); // Compute hash
HashEntry e = buckets[idx]; // to find bucket
while (e != null) { // Find element in bucket

if (equals(key, e.key))
return e.value;

e = e.next;
}
return null;

}

CS636 Swarnendu Biswas 4

Synchronized HashMap in Java

public Object get(Object key) {
synchronized (mutex) { // mutex guards all accesses

return myHashMap.get(key);
}

}

CS636 Swarnendu Biswas 5

• Uses explicit coarse-grained locking

Coarse-Grained and Fine-Grained Locking

Coarse-grained

• Pros: Easy to implement

• Cons: limits concurrency, poor scalability

Fine-grained

• Idea: Use a separate lock per bucket

• Pros: thread safe, concurrent

• Cons: difficult to get correct, error-prone

CS636 Swarnendu Biswas 6

Data Parallelism

• Same task applied on many data items in parallel
• E.g., processing pixels in an image

• Useful for numeric computations

• Not an universal programming model

CS636 Swarnendu Biswas 7

10 1 4 2 9 5 7 8

11 2 5 3 10 6 8 9

⊕⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕

Task vs Data Parallelism

Task Parallelism

• Different operations on same or
different data

• Parallelization depends on task
decomposition

Data Parallelism

• Same operation on different
data

• Parallelization proportional to
the input data size

CS636 Swarnendu Biswas 8

Combining Task and Data Parallelism

Processing in
graphics

processors

Task parallelism
through pipelining

• Each task could apply a
filter in a series of
filters

Data parallelism for
a given filter

• Apply the filter
computation in parallel
for all pixels

CS636 Swarnendu Biswas 9

https://www.zdnet.com/article/understanding-task-and-data-parallelism-3039289129/

Abstraction and Composability

CS636 Swarnendu Biswas 10

Abstraction

• Simplified view of an entity or a problem

• Example: procedures, ADT

Composability

• Join smaller units to form larger, more complex unit

• Example: library methods

Locks are difficult to program!

• If a thread holding a lock is delayed, other contending threads cannot
make progress
• All contending threads will possibly wake up, but only one can make progress

• Lost wakeups – missed notify for condition variable

• Deadlocks

• Priority inversion

• Locking relies on programmer conventions

CS636 Swarnendu Biswas 11

Locking relies on programmer conventions!

• If a thread holding a lock is delayed, other contending threads cannot
make progress
• All contending threads will possibly wake up, but only one can make progress

• Deadlocks

• Priority inversion

• Locking relies on programmer conventions

CS636 Swarnendu Biswas 12

/*

* When a locked buffer is visible to the I/O layer

* BH_Launder is set. This means before unlocking

* we must clear BH_Launder,mb() on alpha and then

* clear BH_Lock, so no reader can see BH_Launder set

* on an unlocked buffer and then risk to deadlock.

*/

Actual comment
from Linux Kernel

Bradley Kuszmaul, and Maurice Herlihy and Nir Shavit

Lock-based Synchronization is not
Composable
class HashTable {

void synchronized insert(T elem);

boolean synchronized remove(T elem);

}

Say now you want to add a new method:
boolean move(HashTable tab1, HashTable tab2, T elem)

CS636 Swarnendu Biswas 13

Choosing the right locks!

• Locking schemes for 4 threads may not be the most efficient at 64
threads
• Need to profile the amount of contention

CS636 Swarnendu Biswas 14

What about hardware atomic
primitives?

CS636 Swarnendu Biswas 15

Transactional Memory

• Transaction: A computation sequence that executes as if without
external interference
• Computation sequence appears indivisible and instantaneous

• Proposed by Lomet [‘77] and Herlihy and Moss [‘93]

CS636 Swarnendu Biswas 16

Advantages of Transactional Memory (TM)

• Provides reasonable tradeoff between abstraction and performance
• No need for explicit locking

• Avoids lock-related issues like lock convoying, priority inversion, and deadlocks

CS636 Swarnendu Biswas 17

boolean move(HashTable tab1, HashTable tab2, T elem) {
atomic {
boolean res = tab1.remove(elem);
if (res)
tab2.insert(elem);

}
return res;

}

Advantages of TM

Programmer says what needs to be atomic
• TM system/runtime implements synchronization

Declarative abstraction
• Programmer says what work should be done

• Compare with imperative abstraction

• Programmer says how work should be done

Easy programmability (like coarse-grained locks)
• Performance goal is like fine-grained locks

CS636 Swarnendu Biswas 18

Basic TM Design

• Transactions are executed speculatively

• If the transaction execution completes without a conflict, then the
transaction commits
• The updates are made permanent

• If the transaction experiences a conflict, then it aborts

CS636 Swarnendu Biswas 19

Database Systems as a Motivation

CS636 Swarnendu Biswas 20

• Database systems have successfully exploited parallel hardware for
decades

• Achieve good performance by executing many queries simultaneously
and by running queries on multiple processors when possible

Database Systems as a Motivation

Atomicity

Consistency

Isolation

Durability

CS636 Swarnendu Biswas 21

TM vs Database Transactions

Database Transactions

• Application level concept

• Durable

• Operations involve mostly disk
accesses

TM

• Supported by language runtime
or hardware

• Not durable

• Operations are from main
memory, performance is critical

CS636 Swarnendu Biswas 22

Properties of TM execution

Tx Atomic appears to happen
instantaneously

Commit Appears atomic

Abort Has no side effects

Serializable appear to happen serially in
order

Isolation Other code cannot observe
writers before commit

CS636 Swarnendu Biswas 23

TM Execution Semantics

Thread 1

atomic {

a = a – 20;

b = b + 20;

c = a + b;

a = a – b;

}

Thread 2

atomic {

c = c + 40;

d = a + b + c;

}

CS636 Swarnendu Biswas 24

Thread 1’s updates to a,
b, and c are atomic

Thread 2’s either sees ALL
updates to a, b, and c from

T1 or NONE

No data race due to
TM semantics

Atomicity violation

if (thd->proc_info)

fputs(thd->proc_info, …)

…

thd->proc_info = NULL;
…

CS636 Swarnendu Biswas 25

MySQL
ha_innodb.cc

ti
m

e

Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)

fputs(thd->proc_info, …)
}

atomic {
thd->proc_info = NULL;

}

CS636 Swarnendu Biswas 26

No data race due to
TM semantics

ti
m

e

Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)
fputs(thd->proc_info, …)

}

atomic {
thd->proc_info = NULL;

}

CS636 Swarnendu Biswas 27

No data race due to
TM semantics

ti
m

e

Transactional HashMap

Pros

• Thread-safe, easy to
program

Cons

• Good performance and
scalability depends on
the TM implementation

CS636 Swarnendu Biswas 28

synchronized in Java

synchronized

• Provides mutual exclusion
compared to other blocks on the
same lock

• Nested blocks can deadlock if
locks are acquired in wrong
order

TM transaction

• A transaction is atomic w.r.t. all
other transactions in the system

• Nested transactions never
deadlock

CS636 Swarnendu Biswas 29

TM Interface

void startTx();
bool commitTx();

void abortTx();

T readTx(T *addr);
void writeTx(T *addr, T val);

CS636 Swarnendu Biswas 30

•Set of variables read by the Tx

Read set

•Set of variables written by the Tx

Write set

Transactions cannot replace all uses of locks!

Thread 1

do {

startTx();

writeTx(&x, 1);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp = readTx(&x);

while (tmp == 0) {}

} while (!commitTx());

CS636 Swarnendu Biswas 31

Concurrency in TM

• Two levels
• Among Txs

• Among individual Tx
operations

CS636 Swarnendu Biswas 32

rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx

Linearizability

CS636 Swarnendu Biswas 33

time

rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx

Serializability

CS636 Swarnendu Biswas 35

time

Thread 1

Thread 2

rdTx p wrTx q commitTxstartTx

rdTx x wrTx y
commit

Tx
startTx

Strict Serializability

CS636 Swarnendu Biswas 36

time

Thread 1

Thread 2

rdTx p wrTx q commitTxstartTx

rdTx x wrTx y
commit

Tx
startTx

Limitations of Strict Serializability

CS636 Swarnendu Biswas 37

time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

Can Linearizability help with this?

CS636 Swarnendu Biswas 38

time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

Can Linearizability help with this?

CS636 Swarnendu Biswas 39

time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

If each transaction appears to execute atomically at a single
instant, then conflicts between transactions will not occur

Snapshot Isolation (SI)

• Can potentially allow greater concurrency between Txs

• Many database implementations actually provide SI

Weaker isolation requirement than serializability

SI allows a Tx’s reads to be serialized before the Tx’s writes

All reads must see a valid snapshot of memory

Updates must not conflict

CS636 Swarnendu Biswas 40

Example of SI

Thread 1

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(x, tmp);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(y, tmp);

} while (!commitTx());

CS636 Swarnendu Biswas 41

x = 0
y = 0

Understanding SI

int t = x + 1; (1)

x = t;

x = 1;

int t = y; (0)

int t = x + 1; (1)

x = t;

y = 1;

int t = x; (0)

CS636 Swarnendu Biswas 42

Sequentially consistent but not SI

SI but not sequentially consistent and not serializable

x = 0
y = 0

Data races are there
for a purpose!

M. Zhang et al. Avoiding Consistency ExceptionsUnder Strong Memory Models. ISMM 2017.

TM Terminology

CS636 Swarnendu Biswas 43

A conflict occurs when two transactions perform conflicting
operations on the same memory location.

Let Ri and Wi be the read and write sets of Tx i. Then a conflict occurs iff
• 𝑅𝑖 ∩𝑊𝑗 ≠ ∅, or
• 𝑊𝑖 ∩𝑊𝑗 ≠ ∅, or
• 𝑊𝑖 ∩ 𝑅𝑗 ≠ ∅

TM Terminology

CS636 Swarnendu Biswas 44

The conflict is detected when the underlying TM system
determines that the conflict has occurred.

The conflict is resolved when the underlying TM system takes
some action to avoid the conflict.

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 46

Location
Value
read

Value
written

Location
Value
read

Value
written

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 47

Location
Value
read

Value
written

Location
Value
read

Value
written

bal 1000

1

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 48

Location
Value
read

Value
written

bal 1000

Location
Value
read

Value
written

bal 1000

2

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 49

Location
Value
read

Value
written

bal 1000 1100

Location
Value
read

Value
written

bal 1000

3

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 50

Location
Value
read

Value
written

bal 1000 1100

Location
Value
read

Value
written

bal 1000

3

Thread 1’s Tx ends, updates are
committed, value of bal is written

to memory; Tx log is discarded

bal = 1100

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 51

Location
Value
read

Value
written

bal 1000 900

4

bal = 1100

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS636 Swarnendu Biswas 52

Location
Value
read

Value
written

bal 1000 900

4

bal = 1100

Thread 2’s Tx ends, but Tx commit fails,
because value of bal in memory does

not match the read log; Tx needs to rerun

Concurrency Control

• Occurrence, detection, and resolution happen at the
same time during execution

Pessimistic

• Conflict detection and resolution can happen after the
conflict occurs

Optimistic

CS636 Swarnendu Biswas 53

Pessimistic Concurrency Control

CS636 Swarnendu Biswas 54

time

rdTx p wrTx q wrTx rstartTx
commit

Tx

rdTx p wrTx qstartTx wrTx r
commit

Tx

Conflict occurs, is detected, and is resolved by
delaying Thread 2’s Tx

Thread 1

Thread 2

Time of locking

When the Tx first accesses a location

When the Tx is about to commit

CS636 Swarnendu Biswas 55

Optimistic Concurrency Control

CS636 Swarnendu Biswas 56

time

rdTx p wrTx q wrTx rstartTx

Conflict
occurs

Thread 1

Thread 2

rdTx p wrTx q wrTx rstartTx

Conflict
detected and
resolved by
aborting the

Txs and
reexecuting
one or both

of them

Concurrency Control

Pessimistic

• Usually claims exclusive ownership of
data before accessing

• Effective in high contention cases

• Needs to avoid deadlock situations

Optimistic

• Avoids claiming exclusive ownership
of data

• Effective in low contention cases

• Needs to avoid livelock situations

CS636 Swarnendu Biswas 57

Hybrid Concurrency Control

Use pessimistic control for writes and optimistic control for reads

Use optimistic control TM with pessimistic control of irrevocable Txs

CS636 Swarnendu Biswas 58

Version Management

TMs need to track updates for conflict
resolution

Eager

• Tx directly updates data in memory (direct
update)

• Maintains an undo log with overwritten values

• Values in the undo log are used to revert
updates on an abort

CS636 Swarnendu Biswas 59

Eager version
management

Upon
commit

On abort

Flush undo
log

Write back
undo log

Version Management

Lazy

• Tx updates data in a private redo log

• Updates are made visible at commit
(deferred update)

• Tx reads must lookup redo logs

• Discard redo log on an abort

CS636 Swarnendu Biswas 60

Lazy version
management

Upon
commit

On abort

Write back
redo log

Flush redo
log

Conflict Detection

CS636 Swarnendu Biswas 61

Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?

Conflict Detection

CS636 Swarnendu Biswas 62

Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?
• Validation operation – Successful validation means Tx had no

conflicts

Conflict Detection in Optimistic Concurrency
Control

Conflict granularity

• Object or field, line offset or cache line

Time of conflict detection

• Just before access (eager), during validation, during commit (lazy)

Conflicting access types

• Among concurrent Txs, or between active and committed Txs

CS636 Swarnendu Biswas 63

Object Layout

CS636 Swarnendu Biswas 64

Object layout

HEADER

field1

field2

field3

Object Model in Jikes RVM

https://www.jikesrvm.org/JavaDoc/org/jikesrvm/objectmodel/ObjectModel.html

Issues with Conflict Granularity

Thread 1

do {

startTx();

tmp = readTx(&x);

writeTx(x, 10);

} while (!commitTx());

Thread 2

…

y = 20;

…

CS636 Swarnendu Biswas 65

x = 0
y = 0

Question

• Eager version management
• Should you use pessimistic or optimistic control?

CS636 Swarnendu Biswas 67

Inconsistent Reads and Zombie Txs

Thread 1

do {
startTx();
int tmp1 = readTx(&x);

int tmp2 = readTx(&y);
while (tmp1 != tmp2) {}

} while (!commitTx());

Thread 2

do {
startTx();
writeTx(&x, 10);
writeTx(&y, 10);

} while (!commitTx());

CS636 Swarnendu Biswas 68

x = 0
y = 0

Weak and Strong Atomicity

Weak

• Provides Tx semantics only among Txs

• Checks for conflicts only among Txs

Strong

• Guarantees Tx semantics among Txs and non-Txs

Often referred to as weak and strong isolation

CS636 Swarnendu Biswas 70

Few Issues to Consider with Weak Isolation

Non-repeatable reads

Intermediate lost updates

Intermediate dirty reads

Granular lost updates

…

…

CS636 Swarnendu Biswas 71

Providing Txs: TM Implementations

Software Transactional Memory (STM)

Hardware Transactional Memory (HTM)

CS636 Swarnendu Biswas 72

STMs vs HTMs

STM

• Supports flexible techniques in
TM design

• Easy to integrate STMs with PL
runtimes

• Easier to support unbounded Txs
with dynamically-sized logs

• More expensive than HTMs

HTM

• Restricted variety of
implementations

• Need to adapt existing runtimes
to make use of HTM

• Limited by bounded-sized
structures like caches

• Better performance than STMs

CS636 Swarnendu Biswas 73

Software Transactional
Memory

CS636 Swarnendu Biswas 74

Software Transactional Memory (STM)

Data structures

• Need to maintain per-thread Tx
state

• Maintain either redo log or undo
log

• Maintain per-Tx read/write sets

• McRT-STM, PPoPP’06

• Bartok-STM, PLDI’06

• JudoSTM, PACT’07

• RingSTM, SPAA’08

• NoRec STM, PPoPP’10

• DeuceSTM, HiPEAC’10

• LarkTM, PPoPP’15

CS636 Swarnendu Biswas 75

We love questions!

Is design of undo log important in eager version
management?

Is design of redo log important in lazy version
management?

CS636 Swarnendu Biswas 76

Well-designed applications should have low conflict rates

Implementing STM

• Use compilation passes to
instrument the program
• startTx() - Tx entry point (prolog)

• commitTx() - exit point (epilog)

• readTx/writeTx - Transactional
read/write accesses

• TM runtime tracks memory
accesses, detects conflicts, and
commits/aborts Txs

CS636 Swarnendu Biswas 77

atomic {
tmp = x;
y = tmp + 1;

}

td = getTxDesc(thr);
startTx(td);
tmp = readTx(&x);
writeTx(&y, tmp+1);
commitTx(td);

Object Metadata and Word Metadata

CS636 Swarnendu Biswas 78

Object1 layout

metadata

field1

field2

field3

Object2 layout

metadata

field1

Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

metadata4

Variants of Word-based Metadata

CS636 Swarnendu Biswas 79

Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

Use hash functions to map addresses to
a fixed-size metadata space

Addr 1

Addr 2

Addr 3

Addr 4

metadata

Process-wide metadata space

Pros and Cons of Object Metadata

Pros

Metadata lies on
the same cache

line

Single update for
accesses to all

fields

Cons

Potential for false
conflicts

Increases coupling

•E.g., GC
considerations

CS636 Swarnendu Biswas 80

Object1 layout

metadata

field1

field2

field3

Object2 layout

metadata

field1

Major STM Designs

Per-object versioned locks (McRT-STM, Bartok-STM)

Global clock with per-object metadata (TL2)

Fixed global metadata (JudoSTM, RingSTM, NOrec STM)

Nonblocking STM (DSTM)

CS636 Swarnendu Biswas 81

Which granularity to use?

Impact on memory usage

• Speed of mapping location to metadata

Impact on performance

Potential impact due to false conflicts

CS636 Swarnendu Biswas 82

Header Word Optimizations

CS636 Swarnendu Biswas 83

00 00

TM metadata 00 Hashcode 10Normal lock 01

11

Hashcode

Normal lock

TM metadata

1. Initially header word is zero

2. First type of use in encoded
in header word

3. Second type of use triggers
inflations

Lock-Based STM with Versioned Reads

High-
level
design

Pessimistic concurrency-
control for writes

Locks are acquired
dynamically

Optimistic concurrency
control for reads

Validation using version
numbers

CS636 Swarnendu Biswas 84

Other Design Issues

• Eager vs lazy version
management

• Access-time locking or commit-
time locking

CS636 Swarnendu Biswas 85

STM Metadata

• Lock is available – no pending writes, holds the current version of the
object

• Lock is taken – refers to the owner Tx

CS636 Swarnendu Biswas 86

Versioned locks
• Lock – To arbitrate writes
• Version number – detect conflicts involving reads

Read and Write Operations
readTx(tx, obj, off) {
tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);

tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;

write(obj, off, newVal);
release(obj);

}

CS636 Swarnendu Biswas 87

Eager version
management

Read and Write Operations
readTx(tx, obj, off) {
tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);
undoLogInt(tx, obj, off);
tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;
write(obj, off, newVal);
release(obj);

}

undoLogInt(tx, obj, off) {
tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

}CS636 Swarnendu Biswas 88

Eager version
management

Conflict Detection on Writes

Writes? Reads

CS636 Swarnendu Biswas 89

Conflict Detection on Reads

Writes Reads?

bool commitTx(tx) {

foreach (entry e in tx.readSet)

if (!validate(e.obj, e.ver))

abortTx(tx);

return false;

foreach (entr e in tx.writeSet)

unlock(e.obj, e.ver);

return true;

}

CS636 Swarnendu Biswas 90

Unlock increments
the version number

No Conflict on Read from Addr=200

CS636 Swarnendu Biswas 91

addr = 200, ver = 100

Read set
ver = 100

x == 42

Remember:
metadata doubles as

a version and lock

Addr = 200

No Conflict on Read from and Write to
Addr=200

CS636 Swarnendu Biswas 92

x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200

No Conflict on Write to and Read from
Addr=200

CS636 Swarnendu Biswas 93

x == 17 addr = 200,

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200

Conflict on Read from Addr=200, Concurrent
Tx Updates and Commits

CS636 Swarnendu Biswas 94

addr = 200, ver = 100

Read set
ver = 101

x == 2Addr = 200

Conflict on Read from Addr=200, Concurrent
Write

CS636 Swarnendu Biswas 95

addr = 200,

Read set
ver = 105

x == 22Addr = 200

Conflict on Read from Addr=200 during
Commit

CS636 Swarnendu Biswas 96

addr = 200, ver = 100

Read set

x == 47Addr = 200

Conflict Between Read and Write from
Addr=200

CS636 Swarnendu Biswas 97

x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 101

Write set

addr = 200, val = 42

Undo log

Addr = 200

Practical Issues

Version overflow

Do these techniques (McRT, Bartok) allow zombie txs?

CS636 Swarnendu Biswas 98

Semantics of McRT and Bartok

Read set may not remain consistent during txs

Does not detect conflicts between txs and non-txs

CS636 Swarnendu Biswas 99

Hardware Transactional
Memory

CS636 Swarnendu Biswas 100

Hardware Transactional Memory (HTM)

• Can provide strong isolation
without modifications to non-Tx
accesses

• TCC, ISCA’04

• LogTM, HPCA’06

• Rock HTM, ASPLOS’09

• FlexTM, ICS’09

• Azul HTM

• Intel TSX

• IBM Blue Gene/Q

CS636 Swarnendu Biswas 101

Possible ISA Extensions

Explicit

• begin_transaction

• end_transaction

• load_transactional

• store_transactional

Implicit

• begin_transaction

• end_transaction

CS636 Swarnendu Biswas 102

Which do you
think is simpler?

Design Issues in HTMs

• Requires additional structures

• Extend existing data caches to track accesses

• Granularity matters

Tracking read and write sets

• Natural to piggyback on cache coherence protocols to detect
conflicts

Conflict detection

CS636 Swarnendu Biswas 103

Intel Transactional Synchronization
Extensions

TSX supported by Intel in selected series based on Haswell
microarchitecture

TSX hardware can dynamically determine whether threads need to
serialize lock-protected critical sections

CS636 Swarnendu Biswas 104

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

Intel Transactional Synchronization Extensions

• Optimistically executes critical sections eliding lock
operations

• Commit if the Tx executes successfully

• Otherwise abort – discard all updates, restore
architectural state, and resume execution

• Resumed execution may fall back to locking

TSX operation

CS636 Swarnendu Biswas 105

TSX Interface

Hardware Lock Elision (HLE)

• xacquire

• xrelease

• Extends HTM support to legacy
hardware

Restricted Transactional Memory (RTM)

• xbegin

• xend

• xabort

• xtest

• New ISA extensions

CS636 Swarnendu Biswas 106

Hardware Lock Elision (HLE)

• Application uses legacy-compatible hints to identify critical sections
• Hints ignored on hardware without TSX

• HLE provides support to execute critical section transactionally
without acquiring locks

• Abort causes a re-execution without lock elision

• Hardware manages all state

CS636 Swarnendu Biswas 107

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

Lock Acquire Code

CS636 Swarnendu Biswas 108

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

HLE Interface

CS636 Swarnendu Biswas 109

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

mov eax, 1
Try: xacquire lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

xrelease mov mutex, 0

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

Restricted Transactional Memory (RTM)

• Software uses new instructions to identify critical sections

• Similar to HLE, but more flexible interface for software
• Requires programmers to provide an alternate fallback path

• Abort transfers control to target specified by XBEGIN operand

• Abort information encoded in the EAX GPR

CS636 Swarnendu Biswas 110

Lock Acquire Code

CS636 Swarnendu Biswas 111

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

RTM Interface

CS636 Swarnendu Biswas 112

Retry: xbegin Abort
cmp mutex, 0
jz Success
xabort $0xff

Abort:
// check eax and do retry policy
// actually acquire lock or wait

to retry
…

cmp mutex, 0
jnz Rel
xend

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

Rel: mov mutex, 0

Aborts in TSX

• Conflicting accesses from different cores (data, locks, false sharing)

• Capacity misses

• Some instructions always cause aborts
• System calls, I/O

• Eviction of a transactionally-written cache line

• Eviction of transactionally-read cache lines do not cause immediate
aborts
• Backed up in a secondary structure which might overflow

CS636 Swarnendu Biswas 113

Section 12.2.4 in Intel 64 and IA-32 Architectures Optimization Reference Manual

Finding Reasons for Aborts can be Hard!

EAX register bit position Meaning

0 Set if abort caused by XABORT instruction

1 If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set

2 Set if another logical processor conflicted with a memory address that was part of
the transaction that aborted

3 Set if an internal buffer overflowed

4 Set if debug breakpoint was hit

5 Set if an abort occurred during execution of a nested transaction

23:6 Reserved

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved)

CS636 Swarnendu Biswas 114

TSX Implementation Details

• Every detail is not known
• Read and write sets are at cache line granularity

• Uses L1 data cache as the storage

• Conflict detection is through cache coherence protocol

CS636 Swarnendu Biswas 115

TSX Caveats

• No guarantees that txs will commit

• There should be a software fallback independent of TSX to guarantee
forward progress

CS636 Swarnendu Biswas 116

CS636 Swarnendu Biswas 117

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

So what?

• GNU glibc 2.18 added support for lock elision of pthread mutexes of type
PTHREAD_MUTEX_DEFAULT. Glibc 2.19 added support for elision of read/write
mutexes
• Depends whether the --enable-lock-elision=yes parameter was set at compilation time of the

library

• Java JDK 8u20 onward support adaptive elision for synchronized sections when
the -XX:+UseRTMLocking option is enabled

• Intel Thread Building Blocks (TBB) 4.2 supports elision with the
speculative_spin_rw_mutex

CS636 Swarnendu Biswas 118

References

• T. Harris et al. – Transactional Memory, 2nd edition.

• D. Sorin et al. – A Primer on Memory Consistency and Cache Coherence

• R. Yoo et al. - Performance Evaluation of Intel Transactional Synchronization Extensions for High-Performance
Computing. SC 2013.

• Intel 64 and IA-32 Architectures Optimization Reference Manual

CS636 Swarnendu Biswas 121

